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Abstract

The corrections to neutrino mixing parameters in the presence of matter of constant density are
calculated systematically as series expansions in terms of the mass hierarchy ∆m2

21/∆m2
31. The

parameter mapping obtained is then used to find simple, but nevertheless accurate formulas for os-
cillation probabibilities in matter including CP-effects. Expressions with one to one correspondence
to the vacuum case are derived, which are valid for neutrino energies above the solar resonance
energy. Two applications are given to show that these results are a useful and powerful tool for
analytical studies of neutrino beams passing through the Earth mantle or core: First, the “dis-
entanglement problem” of matter and CP-effects in the CP-asymmetry is discussed and second,
estimations of the statistical sensitivity to the CP-terms of the oscillation probabilities in neutrino
factory experiments are presented.



1 Introduction

With the development of long baseline neutrino beams passing through the mantle of the Earth,
three flavor neutrino oscillation with a constant matter profile is presently drawing attention. Some
effort has been spared on the exact solution of the connected cubic eigenvalue problem [1]. However,
the obtained solutions are huge and were up to now only used in computer based calculations.
Also approximative solutions for oscillation probabilities and mixing angles have been proposed
for several parameter regions [2], which are interesting and useful. The intention of this work
is to first derive analytic approximations for the mixing parameters in matter1 according to the
standard parameterization, which then allows to compute all desired quantities like probabilities
or amplitudes from the known expressions in vacuum by substitution. The parameters in matter
are calculated in a series expansion in the small mass hierarchy parameter α := ∆m2

21/∆m2
31. The

obtained results are discussed and then applied to the appearance channel probability P (νe → νµ).
A simple solution, which is easy to use, but nevertheless accurate over a wide parameter range is
obtained. No new notation is introduced besides abbreviations known from two neutrino oscillation
in matter. Furthermore, the result shows at first sight the convergence to the vacuum case at
small baselines and thus is directly connected to the terms in vacuum. The approximate solutions
obtained with this method are a powerful tool for further analytical studies. To demonstrate this,
two applications are given. First the derived expressions are exploited to compute the frequently
used quantity called the CP-asymmetry ACP, which has considerable importance in CP-violation
studies. The problem is that matter effects cause contributions to the CP-asymmetry, which
cannot easily be distinguished from intrinsic CP-effects. Here, expressions for ACP in matter are
given for high neutrino energies (more precise: low L/Eν). The result is then used to investigate
what can be learned from the energy dependence of ACP. The second application given estimates
the statistical sensitivity to the CP-terms of the oscillation probabilities in neutrino factory long
baseline experiments. Plots are presented, which show the magnitude of CP-effects at different
baselines and beam energies. Contrarily to what presently can be found in the literature, the here
obtained results indicate strongly that, in general, the low energy option is not the best solution
to measure effects from the CP-phase δ. The reason for this discrepancy is discussed.

Throughout this work two assumptions will be made: First, that the mass hierarchy parameter
α := ∆m2

12/∆m2
31, which is used as expansion parameter, is small. Consider for example an

atmospheric ∆m2 of 3.2 · 10−3 eV2 [3] . For solar mass differences of LMA-scale2 [4] between
10−5 eV2 and 10−4 eV2, α varies between 0.0031 and 0.031. Second, it will be assumed that
the mixing angle θ13 is small as indicated by reactor, solar, and atmospheric experiments. The
strongest bound is given by the CHOOZ experiment [5] with sin2 2θ13 < 0.1. The smallness
of this parameter will be used to classify terms, which appear in the expressions for oscillation
probabilities. The mixing angles θ12 and θ23 should be chosen from the interval [0, π/2].

1 Oscillation in matter can be described by a mapping of the six basic parameters θ12, θ13, θ23, ∆m2

21, ∆m2

31,
and δ similar to the well-known two neutrino oscillation formulas in matter.

2The abbreviation “LMA” stands for Large Mixing Angle MSW-solution to the solar neutrino problem. The
MSW-solution assumes resonance enhanced oscillation of neutrinos passing the core of the sun.
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2 Three neutrino oscillation in vacuum

In vacuum, the neutrino oscillation probabilities are given by the well-known formulas

P (νel
→ νem

) = δlm − 4
∑

i>j

ReJ lm
ij sin2 ∆̂ij − 2

∑

i>j

ImJ lm
ij sin 2∆̂ij , (1)

with the abbreviations J lm
ij := UliU

∗
ljU

∗
miUmj and ∆̂ij := ∆m2

ijL/(4E). Here, U is the mixing
matrix of the neutrino sector in standard parameterization form:

U =





c12c13 c13s12 e−iδs13

−s12c23 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

−eiδc12s13c23 + s12s23 −eiδs12s13c23 − c12s23 c13c23



 . (2)

Since in this work, the hierarchy |∆m2
21| � |∆m2

31| between the two mass squared differences
is exploited, from now on all mass squared differences will always be related to the atmospheric
squared mass difference: ∆m2

31 =: ∆, ∆m2
21 = α∆, ∆m2

32 = (1 − α)∆, and ∆̂ = ∆L/(4E).
Series expansion up to order α2 gives the following important terms in the oscillation probability
P (νe → νµ) ≈ P0 + Psin δ + Pcos δ + P3:

P0 = sin2 θ23 sin2 2θ13 sin2 ∆̂ (3a)

Psin δ = α sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin3 ∆̂ (3b)

Pcos δ = α cos δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 cos ∆̂ sin2 ∆̂ (3c)

P3 = α2 cos2 θ23 sin2 2θ12 sin2 ∆̂ (3d)

Expanding the oscillatory terms in α means linearization of the oscillation over the solar mass
squared difference. This gives valid results only for α∆̂ . 1. With todays knowledge about
neutrino masses this does not cause crucial errors for neutrino energies above 1 GeV at baselines
below approximately 10000 km. The two terms Psin δ and Pcos δ, containing the CP-phase δ, are
both of order α and hence suppressed by the mass hierarchy. This reflects the fact that CP-effects
vanish when the mass hierarchy becomes large. Besides the factor sin2 θ23, the term P0 is similar to
the two neutrino oscillation probability which in matter is expected to show the resonant behavior
called MSW-effect [6]. The term P3 is the only term of order α2, which is not suppressed by the
small mixing angle θ13. Hence, it is important to take this term into account when θ13 is small.
If θ13 is not too far away from the CHOOZ-bound, P3 can safely be neglected. All other terms of
order α2 are additionally suppressed by one or more powers of θ13 and are not listed here.

3 Mixing parameters in matter

In matter, the effective Hamiltonian in flavor basis is given by

H =
1

2E



U





m2
1 0 0

0 m2
2 0

0 0 m2
3



U † +





A 0 0
0 0 0
0 0 0







 . (4)

Here U = U23(θ23)U13(θ13, δ)U12(θ12) is the mixing matrix, which rotates from mass to flavor basis.
The second term is generated by matter effects with A = 2V Eν and V =

√
2GF ne, where GF is
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the Fermi coupling constant and ne is the electron density of the matter, which is crossed by the
neutrino beam.

The matter term is invariant under rotations in the 23-subspace. Separating diag(m2
1,m

2
1,m

2
1)

which, as global phase, does not contribute to the probability, and using the above defined para-
meters, the Hamiltonian can be written in the form

H =
∆

2E
U23



U13U12





0 0 0
0 α 0
0 0 1



U †
12U

†
13 +





A
∆ 0 0
0 0 0
0 0 0







U †
23 . (5)

With

Uδ :=





1 0 0
0 1 0
0 0 eiδ



 , (6)

the relations

U †
δ U13(θ13, δ)Uδ = U13(θ13, 0) , (7a)

U †
δ U12(θ12)Uδ = U12(θ12) , (7b)

U †
δ diag(a, b, c)Uδ = diag(a, b, c) (7c)

are valid. Inserting the identity matrix Uδ U †
δ at the appropriate places in eq. (5) gives

H =
∆

2E
U23 Uδ



U13(θ13, 0)U12





0 0 0
0 α 0
0 0 1



U †
12 U13(θ13, 0)

† +





A
∆ 0 0
0 0 0
0 0 0









︸ ︷︷ ︸

M

U †
δ U †

23 . (8)

Diagonalization of the real matrix M by Û := U23(θ̂23)U13(θ̂13)U12(θ̂12) together with the part
which was factored out gives the complete mixing matrix U ′ in matter:

U ′ = U23(θ23)Uδ U23(θ̂23)U13(θ̂13)U12(θ̂12) . (9)

Mixing angles in standard parameterization form

The matrix U ′ must still be brought to the standard form. The matrix

U23(θ23)Uδ U23(θ̂23) =





1 0 0
0 C S
0 −eiδS∗ eiδC∗



 (10)

with

C := cos θ23 cos θ̂23 − eiδ sin θ23 sin θ̂23 , (11a)

S := cos θ23 sin θ̂23 + eiδ sin θ23 cos θ̂23 (11b)
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can be made real by the phase rotations β := −arg C, γ := arg S, and δ′ := arg C − arg S 3 :





1 0 0
0 e−iβ 0

0 0 −e(iδ−γ)



 U23(θ23)Uδ U23(θ̂23)





1 0 0
0 1 0

0 0 e−iδ′



 =





1 0 0
0 |C| |S|
0 −|S| |C|



 . (12)

This gives

U ′ =





1 0 0
0 eiβ 0

0 0 −e(iγ−δ)









1 0 0
0 |C| |S|
0 −|S| |C|



 Uδ′ U13(θ̂13)U †
δ′ U12(θ̂12)Uδ′ . (13)

The phase rotations on the left and on the right can be absorbed in the field vectors, yielding then
U ′ in standard parameterization form:

U ′ = U(θ′23)U13(θ̂13, δ
′)U12(θ̂12) . (14)

This finally means, that the (standard) mixing angles θ′13 and θ′12 in matter are equal to θ̂13 and
θ̂12 which are obtained from the matrix that diagonalizes M . The matter correction θ̂23, however,
mixes with the CP-phase δ:

θ′13 = θ̂13 , (15a)

θ′12 = θ̂12 , (15b)

sin2 θ′23 = cos2 θ23 sin2 θ̂23 + sin2 θ23 cos2 θ̂23 + 2cos δ sin θ23 cos θ23 sin θ̂23 cos θ̂23 , (15c)

sin δ′ = sin δ
sin 2θ23

sin 2θ′23
. (15d)

Equation (15d) was first found by S. Toshev [7]. There, a different parameterization is used, which
– for oscillations – is equivalent to the standard parameterization. It is important to note that
the results given up to here are exact results for three neutrino oscillation in matter and do not
presume that the mass hierarchy parameter is small.

Calculation of the eigenvalues and eigenvectors

Hereafter Â will be used as abbreviation for A
∆ . Diagonalization of the matrix M leads to the

oscillation parameters in matter. Note that M does not include the parameters θ23 and δ, which
have been factored out. This will simplify the calculation of the eigenvalues and eigenvectors of
M considerably:

M =





s2
13 + Â + αc2

13s
2
12 αs12c12c13 s13c13 − αs13c13s

2
12

αs12c12c13 αc2
12 −αs12c12s13

s13c13 − αs13c13s
2
12 −αs12c12s13 c2

13 + αs2
12s

2
13



 . (16)

3Using |C| and |S| in eq. (12) further restricts the parameter space for θ23. Since θ23 is assumed to be close to
π/4 and θ̂23 in general is small, this problem is not relevant for the calculations presented here.
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The invariants of the cubic eigenvalue problem are given by

I1 = Tr(M) = λ1 + λ2 + λ3 =

= Â + 1 + α , (17a)

I2 =
1

2

[
Tr(M) − Tr(M2)

]
= λ1λ2 + λ1λ3 + λ2λ3 =

= Â cos2 θ13 + α + αÂ
(
sin2 θ13 sin2 θ12 + cos2 θ12

)
, (17b)

I3 = Det(M) = λ1λ2λ3 =

= αÂ cos2 θ13 cos2 θ12 . (17c)

Solving this system of equations in a series expansion of α gives the eigenvalues

λ1 =
1

2
(Â + 1 − Ĉ) + α

(Ĉ + 1 − Â cos 2θ13) sin2 θ12

2Ĉ
+ O(α2) , (18a)

λ2 = α cos2 θ12 + O(α2) , (18b)

λ3 =
1

2
(Â + 1 + Ĉ) + α

(Ĉ − 1 + Â cos 2θ13) sin2 θ12

2Ĉ
+ O(α2) , (18c)

with

Ĉ =

√

(Â − cos 2θ13)2 + sin2 2θ13 . (19)

Here, Ĉ is the same square root, which appears in the two neutrino matter formulas.

Calculating the eigenvectors of M in order O(α) gives:

v1 =









sin 2θ13√
2Ĉ(Â+Ĉ−cos 2θ13)

− α Â sin2 θ12 sin2 2θ13

2Ĉ
√

2Ĉ2(−Â+Ĉ+cos 2θ13)
α (1+Â−Ĉ) sin 2θ12 sin θ13

(1+Â+Ĉ)
√

2Ĉ(Â+Ĉ−cos 2θ13)

− sin 2θ13√
2Ĉ(−Â+Ĉ+cos 2θ13)

− α Â sin2 θ12 sin2 2θ13

2Ĉ
√

2Ĉ2(Â+Ĉ−cos 2θ13)









+ O(α2) , (20a)

v2 =






−α cos θ12 sin θ12

Â cos θ13

1
α (1+Â) cos θ12 sin θ12 sin θ13

Â cos2 θ13




+ O(α2) , (20b)

v3 =









sin 2θ13√
2Ĉ(−Â+Ĉ+cos 2θ13)

+ α Â sin2 θ12 sin2 2θ13

2Ĉ
√

2Ĉ2(Â+Ĉ−cos 2θ13)
α (1+Â−Ĉ) sin 2θ12 sin θ13

(1+Â+Ĉ)
√

2Ĉ(−Â+Ĉ+cos 2θ13)
sin 2θ13√

2Ĉ(Â+Ĉ−cos 2θ13)
− α Â sin2 θ12 sin2 2θ13

2Ĉ
√

2Ĉ2(−Â+Ĉ+cos 2θ13)









+ O(α2) . (20c)

There is one major problem concerning the calculation of the eigenvalues and eigenvectors, which
has to be addressed. Throughout the above series expansion Â was assumed to be different from
zero. This is important as the results given above do not hold for Â = 0 in which case a different
series expansion in α would be obtained. This is a general and important fact. In principle,
it is also possible to give results for small values of |Â|, which, however, would fail for larger
|Â|. The reason for this is that there are two different resonances occurring. One for Â = α
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(solar resonance) and one for Â = cos 2θ13 (atmospheric resonance). Each resonance produces a
level-crossing of the eigenvalues. To describe both level-crossings, the correct expression for the
eigenvalues are necessary. Being interested in approximative solutions, one has to distinguish the
two above mentioned cases. In this work the focus is on the case |Â| > α, which is appropriate for
neutrino beams above 1 GeV in matter densities of 2.8 g/cm3 (Earth mantle) or more. However,
one must not expect that the expressions for the mixing parameters in matter will show the
correct convergence for Â → 0. For ∆m2

21 = 10−4 eV2 and 2.8 g/cm3 we find that Â > α is valid
for Eν > 0.5GeV. This lower bound on the neutrino energy decreases linearly with ∆m2

21.

That the results for the eigenvalues and eigenvectors obtained from the series expansion are not
good at the resonance Â ≈ 1 is another point to mention. However, this does not have a crucial
implication on the obtained results for the parameter mapping and oscillation probabilities. This
issue will be discussed later, at the appropriate places.

Construction of Û

It is now possible to construct Û from the eigenvectors v1, v2, and v3. For this it is necessary
to correctly identify the order and the signs of the eigenvectors. In order to avoid divergences
in the expressions for the mixing angles, it is appropriate to change the order at the resonance
Â = cos 2θ13

4 :

Û =

{

(v1 v2 v3)
T for Â < cos 2θ13

(v3 v2 v1)
T for Â > cos 2θ13

. (21)

The second point is to bring U ′ to a form which is consistent with the standard parameterization.
This is not trivial and has to be carried out carefully for each of the different cases. As an example,
the case Â < 0 will be considered in detail:

As the vacuum angle θ23 was factored out from the beginning (eq. (8)), the matter induced change
of this mixing angle θ̂23 will be of order α. This can be also seen by looking at the (µ, 3)-element
of Û . Furthermore, by looking at the (e, 2)-element, one finds that also θ̂12 must be of order α.

Considering this with the replacements ŝ12 = αŝ
(α)
12 , ŝ23 = αŝ

(α)
23 , and ŝ13 = ŝ

(0)
13 +αŝ

(α)
13 , one obtains

the following structure for Û :

Û =






ĉ13 αĉ
(0)
13 ŝ

(α)
12 ŝ13

−α(ŝ
(α)
12 + ŝ

(0)
13 ŝ

(α)
23 ) 1 αĉ

(0)
13 ŝ

(α)
23

−ŝ13 −α(ŝ
(α)
12 ŝ

(0)
13 + ŝ

(α)
23 ) ĉ13




+ O(α2) . (22)

Then, sin θ̂13 and sin θ̂23 can be read off directly from Ûe3, Ûµ3 and Ûτ3:

sin θ̂13 =
sin 2θ13

√

2Ĉ(−Â + Ĉ + cos 2θ13)
+

α Â sin2 θ12 sin2 2θ13

2Ĉ

√

2Ĉ2(Â + Ĉ − cos 2θ13)
+ O(α2) , (23)

sin θ̂23 = α
(1 + Â − Ĉ) sin 2θ12 sin θ13

2(1 − Â + Ĉ) cos2 θ13

+ O(α2) . (24)

4 Another strategy would be to chose the order in such a way that in the limit |Â| → 0, the correct mixing matrix
in vacuum is obtained. However, since the expressions for the eigenvectors and eigenvalues are not good in this limit,
this is not a feasible solution here.
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To find sin θ̂12, it is now useful to split off θ̂23. The rest Û = UT
23(θ̂23) Û ′ should now be brought

to the form





ĉ13 αĉ
(0)
13 ŝ

(α)
12 ŝ13

−αŝ
(α)
12 1 0

−ŝ′13 −αŝ
(α)
12 ŝ

(0)
13 ĉ13




+ O(α2) . (25)

The mixing angle θ̂12 can then be read off from Û ′
µ1:

sin θ̂12 = − α Ĉ sin 2θ12

Â cos θ13

√

2Ĉ(−Â + Ĉ + cos 2θ13)
+ O(α2) . (26)

Parameter mapping

Considering the correct ordering of the eigenvectors (eq. (21)) and following the above described
steps, one can determine the complete parameter mapping for all regions of the Â parameter space.
Comprising, one obtains the following expressions for the mixing parameters in matter:

sin θ′13 =
sin 2θ13

√

2Ĉ(∓Â + Ĉ ± cos 2θ13)
± α Â sin2 θ12 sin2 2θ13

2Ĉ2

√

2Ĉ(±Â + Ĉ ∓ cos 2θ13)
(27a)

sin θ′12 = α
Ĉ sin 2θ12

|Â| cos θ13

√

2Ĉ(∓Â + Ĉ ± cos 2θ13)
(27b)

sin θ′23 = sin θ23 + α cos δ
Â sin 2θ12 sin θ13 cos θ23

±1 + Ĉ ∓ Â cos 2θ13

(27c)

sin δ′ = sin δ

(

1 − α
cos δ

tan 2θ23

2Â sin 2θ12 sin θ13

±1 + Ĉ ∓ Â cos 2θ13

)

(27d)

Here, in the expressions with choices for the sign, the upper sign holds for Â < cos 2θ13 and the
lower sign holds for Â > cos 2θ13. Higher orders than O(α) are omitted. To take into account
also θ23 and δ, which were factored out at the beginning, the equations (15a-d) were applied. The
expansion of sin δ′ given here does not hold for θ23 → 0.

From this parameter mapping it is possible to derive the following quantities:

sin2 2θ′13 =
sin2 2θ13

Ĉ2
+ α

2Â(−Â + cos 2θ13) sin2 θ12 sin2 2θ13

Ĉ4
(28a)

sin 2θ′12 = α
2Ĉ sin 2θ12

|Â| cos θ13

√

2Ĉ(∓Â + Ĉ ± cos 2θ13)
(28b)

sin 2θ′23 = sin 2θ23 + α cos δ
2Â sin 2θ12 sin θ13 cos 2θ23

±1 + Ĉ ∓ Â cos 2θ13

(28c)

For the mass squared differences one obtains:

(∆m2
21

′
,∆m2

31
′
,∆m2

32
′
) =

{
( ∆m2

3, ∆m2
2, ∆m2

1) for Â < cos 2θ13

(−∆m2
1,−∆m2

2,−∆m2
3) for Â > cos 2θ13

(29)
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with

∆m2
1
′

:= ∆(λ3 − λ2)

=
1

2
(1 + Â + Ĉ)∆ − α∆

(

cos2 θ12 −
(−1 + Ĉ + Â cos 2θ13) sin2 θ12

2Ĉ

)

, (30a)

∆m2
3
′

:= ∆(λ2 − λ1)

=
1

2
(−1 − Â + Ĉ)∆ + α∆

(

cos2 θ12 −
(1 + Ĉ − Â cos 2θ13) sin2 θ12

2Ĉ

)

, (30b)

∆m2
2
′

:= ∆(λ3 − λ1)

= Ĉ∆ + α
∆(−1 + Â cos 2θ13) sin2 θ12

Ĉ
. (30c)

Looking at the expressions for the mixing angles in matter, one obtains the following interesting
statements:

sin2 2θ′

13

In leading order, one finds the well-known resonant behavior of θ′13 familiar from two neutrino
oscillation as MSW-resonance. The order α correction to this leading result is suppressed by two
powers of θ13, and hence, is negligible small. A careful study of the correction indeed shows that
it is small and only important if precise results are to be obtained. The expressions for θ13 do
not show divergences for |Â| → 0 and the vacuum limit is correctly described. Comparison with
numerical results shows an excellent agreement even for |Â| < α.

sin 2θ′

23

In leading order, the mixing angle θ′23 is equal to the vacuum mixing angle sin 2θ23. The order α
correction is double suppressed by θ13 and by cos 2θ23 (when θ23 is close to π/4). Its proportionality
to cos δ is caused by the mixing of the CP-phase δ with the O(α) correction of θ′23 (eq. (15c)). The
expression for θ′23 shows the correct behavior for |Â| → 0 and numerical results are consistent also
for |Â| < α.

sin 2θ′

12

The quantity sin 2θ′12 is of order α. For α → 0 it does not reproduce the vacuum parameter θ12.
But this is not difficult to understand. For α = 0, the first term in the Hamiltonian (eq. (8)) is
invariant under rotations in the 12-subspace. This reflects the fact that for α = 0 the solar mixing
angle does not influence the oscillation probabilities and could in principle be chosen arbitrarily.
Interesting here is that sin 2θ′12, even for large values of |Â|, is proportional to α. In leading order
of θ13 one finds that sin 2θ′12 = α sin 2θ12/|Â|. There appears a divergence for |Â| → 0. The
result is unphysical for |Â| . α, which reflects the problem that the level crossing at the solar
resonance is not correctly described. Since |Â| is proportional to the neutrino energy Eν , sin 2θ′12
is suppressed not only by the mass hierarchy, but also by large neutrino energies.
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CP-phase δ

The correction to the CP-phase δ in matter is triple suppressed by the mass hierarchy α, θ13,
and tan−1 2θ23. For sin2 2θ23 = 1, the CP-phase δ is not changed (in order α). The invariance
of sin δ sin 2θ23 under variations of the matter density ρ (eq. (15d)) is an exact result, which is
independent from the approximations made.

4 CP-violation: JCP in matter

From the vacuum case it is known that the quantity JCP = Im J lm
ij drives the strength of CP-

violating effects. In vacuum, it is given by

8JCP = sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 . (31)

Application of the parameter mapping (eqs. (27)) gives J ′
CP in matter:

sin δ′ cos θ′13 sin 2θ′12 sin 2θ′13 sin 2θ′23 =

α

|Â|Ĉ cos2 θ13

sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 + O(α2) . (32)

One thus finds the important and simple result

J ′
CP =

α

|Â|Ĉ cos2 θ13

JCP . (33)

Applying this result to

J ′
CP∆m′

12∆m′
31∆m′

32 = JCP ∆3α + O(α2) , (34)

the Harrison-Scott invariance J ′
CP∆m′

12∆m′
31∆m′

32 = JCP∆m12∆m31∆m32 [8] can be verified.

It is important to notice that also in matter all CP-violating effects are proportional to the mass
hierarchy α. In vacuum, the suppression of CP-effects through the mass hierarchy is obtained from
the smallness of the solar mass splitting, which is α∆. In matter, the mass hierarchy is lifted, but
the mass hierarchy suppression is retrieved in sin 2θ′12, which is proportional to α, and thus, leads
to a mass hierarchy suppression of J ′

CP.

Another interesting point to notice is the factor 1/Ĉ, which leads to an MSW-like resonant en-
hancement of J ′

CP in matter. It can thus be expected that the CP-terms Psin δ and Pcos δ will
benefit from the MSW-resonance in the same way as the leading two neutrino term P0 does.

5 The νe → νµ appearance probability

Having presented the parameter mapping in matter, it is now possible to start from the ordinary
vacuum expressions (eq. (1)) in order to derive the oscillation probabilities in matter. The J lm

ij

′
as
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series expansion in α take the following shape:

Re Jeµ
12

′
= − cos δ′ sin θ′12 cos2 θ′13 sin θ′13 cos θ′23 sin θ′23

− sin2 θ′12 cos2 θ′23 + O(α3) (35a)

Re Jeµ
13

′
= − cos δ′ sin θ′12 cos2 θ′13 sin θ′13 cos θ′23 sin θ′23

− sin2 2θ′13 sin2 θ′23 + O(α3) (35b)

Re Jeµ
23

′
= cos δ′ sin θ′12 cos2 θ′13 sin θ′13 cos θ′23 sin θ′23 + O(α3) (35c)

ImJeµ
12

′
= − Im Jeµ

13
′
= Im Jeµ

23
′

= cos δ′ sin θ′12 cos2 θ′13 sin θ′13 cos θ′23 sin θ′23 + O(α3) (35d)

Even though in general the calculations were performed only up to order α, a closer look at α2-
terms proves to be important. Each second term of Re Jeµ

12
′
in eq. (35) is of order α2. Since θ′12

is not suppressed by θ13, these terms give a non-negligible contribution to the overall oscillation
probability. This order α2 sin0 θ13 contribution, which will be identified with the P3-term in vacuum
(eqs. (3)) is important for small values of θ13. It is possible to show without explicit calculation
of all order α2-terms of the parameter mapping that no further terms of this kind exist. All other
α2-terms in the oscillation probability will at least be suppressed by one power of θ13.

Inserting the expression for the mixing parameters in matter together with the abbreviation ∆̂ =
∆ L

4E
gives the following list of terms contributing to the oscillation probability P (νe → νµ):

P0 = sin2 θ23
sin2 2θ13

Ĉ2
sin2(∆̂Ĉ) (36a)

Psin δ =
1

2
α

sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

ÂĈ cos θ2
13

sin(Ĉ∆̂)
[

cos(Ĉ∆̂) − cos((1 + Â)∆̂)
]

(36b)

Pcos δ =
1

2
α

cos δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

ÂĈ cos θ2
13

sin(Ĉ∆̂)
[

sin((1 + Â)∆̂) ∓ sin(Ĉ∆̂)
]

(36c)

P1 = −α
1 − Â cos 2θ13

Ĉ3
sin2 θ12 sin2 2θ13 sin2 θ23∆̂ sin(2∆̂Ĉ)

+α
2Â(−Â + cos 2θ13)

Ĉ4
sin2 θ12 sin2 2θ13 sin2 θ23 sin2(∆̂Ĉ) (36d)

P2 = α
∓1 + Ĉ ± Â cos 2θ13

2Ĉ2Â cos2 θ13

cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin2(∆̂Ĉ) (36e)

P3 = α2 2Ĉ cos2 θ23 sin2 2θ12

Â2 cos2 θ13(∓Â + Ĉ ± cos 2θ13)
sin2

(
1

2
(1 + Â ∓ Ĉ)∆̂

)

(36f)

The probability P (ν̄e → ν̄µ) can be obtained from the probability P (νe → νµ) by flipping the sign
of the Psin δ term. In all expressions with two possibilities for the sign, the upper sign is valid for
Â < cos 2θ13 and the lower sign is valid for Â > cos 2θ13. The Â-dependent pre-factors of P1, P2,
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and P3 expanded in θ13 give:

1 − Â cos 2θ13

Ĉ3
= ± 1

(Â − 1)2
+ O(θ2

13)

2Â(−Â + cos 2θ13)

Ĉ4
= − 2Â

(Â − 1)3
+ O(θ2

13)

∓1 + Ĉ ± Â cos 2θ13

2Ĉ2Â cos2 θ13

= O(θ2
13)

2Ĉ

cos2 θ13(∓Â + Ĉ ± cos 2θ13)
= 1 + O(θ2

13)

Thus, P1 is quadratic in sin θ13 and P2 even of third order in θ13. Therefore, P1 and P2 are
negligibly small compared to Psin δ and Pcos δ. The term P3 is important, since it is the only term,
which is not suppressed by θ13. It was stated before that in some cases the expressions for the
eigenvalues and eigenvectors are not good at the resonance Â = cos 2θ13. This problem stems from
the second order in θ13. On the level of probabilities, this deficiency is small and only visible in
the Pcos δ-term for large values of θ13. It turns out that neglecting the subleading terms, which are
the source of this problem, gives very accurate results also for Â = cos 2θ13. This modification can
be applied to both the Pcos δ-term and the Psin δ-term:

Psin δ = α
sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

ÂĈ cos θ2
13

sin Ĉ∆̂ sin ∆̂ sin Â∆̂ , (37a)

Pcos δ = α
cos δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

ÂĈ cos θ2
13

sin Ĉ∆̂ cos ∆̂ sin Â∆̂ . (37b)

Neglecting all subleading terms in θ13, the relevant terms P0, Psin δ, Pcos δ, and P3 take the following
simple shapes:

P0 = sin2 θ23
sin2 2θ13

(Â − 1)2
sin2((Â − 1)∆̂) (38a)

Psin δ = α
sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

Â(1 − Â)
sin(∆̂) sin(Â∆̂) sin((1 − Â)∆̂) (38b)

Pcos δ = α
cos δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

Â(1 − Â)
cos(∆̂) sin(Â∆̂) sin((1 − Â)∆̂) (38c)

P3 = α2 cos2 θ23 sin2 2θ12

Â2
sin2(Â∆̂) (38d)

It is evident that in the limit of small baselines, ∆̂ → 0, these expressions converge to the results in
vacuum (eqs. (3a-d)). A numerical study shows that the precision loss of eqs. (38a-d) compared to
eqs. (36a-f) is only relevant for the largest allowed values of sin2 2θ13 near the CHOOZ-bound (0.1).
The precision loss is mainly caused by the approximations made in P0. The term P3 contributes to
the overall probability only for small θ13, and hence, does not suffer an appreciable accuracy-loss
in the form given in eq. (38d). Figure 1 shows a comparison of the analytic results obtained here
with the results obtained from a numerical study. Note that the combined contributions from
eq. (36a), eqs. (37a,b) and eq. (38d) are identical to the result obtained by Cervera et al. [9] (eq.
(16)). A similar approach has been discussed in ref. [10]. However, eq. (16) therein does not cover
the case of very small θ13, since it does not include order (∆m2

21/∆m2
31)

2 corrections.
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Figure 1: Analytical results (dashed and dotted lines) compared to numerical results (solid line) for the
oscillation probability P (νe → νµ) in matter (2.8 g/cm3) as function of the neutrino energy. Negative
energies correspond to anti-neutrinos. The dashed line uses the expressions 36a,b,c,f. The dotted line
was obtained from equations 38a,b,c,d. The calculation was performed for the baseline L=7000 km with
δ = 0, bimaximal mixing and three values of sin2 2θ13 (0.1, 0.01, 0.001). The squared mass differences are
∆m2

31 = 3.2 · 10−3 eV2 and ∆m2
21 = 1 · 10−4 eV2.

6 Applications

6.1 Validity region of the low L/Eν approximation in matter

Frequently, the low L/Eν limit is used to simplify complex calculations or derive power laws for
neutrino rates. In vacuum, it is well-known that this approximation is valid for

∆̂ . 1 ⇒ Eν & 4.0GeV

(
∆m2

31

3.2 · 10−3 eV2

)(
L

1000 km

)

. (39)

With the use of eqs. (38a-d), it is possible to extend this argument to the presence of matter. Note
that in the oscillatory terms, which are linearized in the small ∆̂ approximation, there now also
appear the terms Â∆̂, which must be small. In this product, the dependences on the energy Eν

and the mass squared difference ∆m2
31 cancel. Hence, in addition to relation (39), a direct limit

on the baseline L, which only depends on the matter density ρ is obtained:

Â∆̂ . 1 ⇒ L . 3700 km

(
ρ

2.8 g/cm3

)−1

. (40)

6.2 CP-asymmetry in matter at small L/Eν

CP-violation studies frequently focus on the fundamental quantity called CP-asymmetry ACP:

ACP =
P (νe → νµ) − P (ν̄e → ν̄µ)

P (νe → νµ) + P (ν̄e → ν̄µ)
. (41)

12



In vacuum, being proportional to sin δ, ACP is a direct measure for intrinsic CP-violation. Since
ACP is a ratio of probabilities, it has the important advantage that, on the level of rates, systematic
experimental uncertainties to a large degree cancel out. However, matter effects also create fake
CP-asymmetry, which spoils measurements of the intrinsic CP-violation induced by δ. The problem
to distinguish these two different sources of CP-violation is often called the “disentanglement
problem”. In a typical long baseline neutrino experiment, the strength of matter induced CP-
effects reaches the strength of intrinsic CP-effects at baselines around 1000 km.

Using the above derived approximative solutions for the appearance probability P (νe → νµ), it is
possible to calculate the small ∆̂ limit of ACP. For bimaximal mixing (θ23 = θ12 = π/4) ACP is
given by

ACP ≈ 2∆̂ sin 2θ13 cos θ13(α∆̂Â cos δ − 3α sin δ + 2∆̂Â sin θ13)

3(α2 + 2α cos θ13 sin 2θ13 + sin2 2θ13)
∼ 1

Eν
. (42)

The approximation is valid in the regime given by eqs. (39) and (40). This limit is helpful to
describe the behavior of ACP for higher neutrino energies at not too long baselines. It is interesting
to notice that in principle the leading contribution to ACP in ∆̂ has its origin in the sin δ term. At
first sight, this would suggest to distinguish this intrinsic contribution from matter contribution
of order ∆̂2 by the energy dependence of ACP. However, taking into account that Â itself is
proportional to Eν , it turns out that all terms in eq. (42) have the same energy dependence 1/Eν .
To summarize: In leading order in ∆̂, the CP-asymmetry in matter is proportional to 1/Eν . The
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Figure 2: Dependence of the high energy limit of the CP-asymmetry on the CP-phase δ for bimaximal
mixing. On the ordinate is plotted the value of EνACP in GeV, which should be energy independent in the
low L/Eν approximation. The solar mass splitting was chosen at the upper edge of the LMA-MSW solution
∆m2

21 = 1 · 10−4 eV2 and the atmospheric mass splitting was varied in the Super-Kamiokande allowed 90%
confidence interval 3.2 · 10−3 < ∆m2

31 < 3.6 · 10−3 eV2. The calculation was performed for a baseline of
1000 km.

coefficient, which describes the 1/Eν -energy dependence of ACP for high energies is sensitive to
both, matter effects Â and intrinsic CP-effects from δ. At high energies, the quantity EνACP

is predicted to be constant in the energy spectrum and this characteristical quantity could give
direct access to the CP-phase δ. This is demonstrated in fig. 2, which shows the value of EνACP

as function of the CP-phase δ at different values of sin2 2θ13. Since EνACP does not vary with the
energy, this simple analysis is to a good approximation independent from the energy distribution
of the neutrino beam. It is of course questionable if, in a real experiment, in the constant regime
of EνACP, there are enough neutrino events to measure. Also this method cannot replace a full
and detailed statistical analysis of the complete neutrino energy spectrum.
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6.3 Strength of the CP-terms Psin δ and Pcos δ

The two subleading terms (36b) and (36c) currently raise considerable interest as they contain
information about the CP-phase δ of the neutrino sector. Today, much effort is spent on the study
of CP-violating effects in neutrino oscillation experiments [11]. One can try a simple approach to
this problem by using the here obtained analytic results. It would, for example, be interesting to
know, how strong the information on δ inherent to the appearance oscillation probability is. To
quantify this, one can look at the relative magnitude of |Psin δ + Pcos δ| compared to the statistical
fluctuations

√
P0 + P3 in the background signal (provided the errors are Gaussian). To obtain

statistical meaningful numbers, the estimation should be performed at the level of event rates
expected in a real experiment, e.g. a neutrino factory long baseline experiment. Typically, flux
times cross sections of a neutrino factory beam [12] scales like E3

ν/L2. A neutrino factory of 20GeV
muon energy and 1020 useful muon decays per year produces 54800 νµ-events in a 10 kton detector
at 1000 km distance (assuming measurements in the appearance channel). As a statistical estimate
the following ratio could be chosen:

S =

√

54800

(
Eµ

20GeV

)3( L

1000 km

)−2 |Psin δ + Pcos δ|√
P0 + P3

. (43)
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Figure 3: 1σ, 2σ, 3σ and 4σ contour lines of the quantity S (eq. (43)) in the L − Eµ parameter plane.
Light shading indicates no signal and dark shading indicates strong signal. The left plot studies only the
Psin δ term. The plot in the middle displays the strength of the Pcos δ term. The right plot, which combines
both terms should give the best approximation to more complex studies. Note that no energy spectrum was
used in this crude model. The calculations were performed with δ = π/2 (left), δ = 0 (middle), δ = π/4
(right), bimaximal mixing, and sin2 2θ13 = 0.01. The mass squared differences are ∆m2

31 = 3.2 · 10−3 eV2

and ∆m2
21 = 1 · 10−4 eV2.

The value of S gives the number of standard deviations (“σ’s”) at which the CP-signal is distinct
from the “background”. Figures 3 show the contour lines 1σ, 2σ, 3σ and 4σ of S in the L − Eµ

parameter plane. The plots were produced with a running average matter density matched to the
baseline L. It is interesting to note that in most of the L−Eµ parameter space, there is no obvious
decrease of the statistical sensitivity to CP-effects for increasing beam energy Eµ as often quoted
in the literature. To study this point in more detail, it is helpful to derive the low L/Eν (eq. 39)
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scaling laws for S in the cases sin δ = 1 and cos δ = 1:

Ssin δ ∼ L
√

Eµ

and Scos δ ∼
√

Eµ . (44)

Indeed, for the Psin δ-term, the statistical sensitivity should decrease like 1/
√

Eµ. However, the
validity-region of the low L/Eν approximation, according to eq. (39), is Eν & (4, 12, 20) GeV for
L = (1000, 3000, 5000) km. In the left plot of fig. 3 it can be seen that roughly at these energies,
S shows a plateau where its maximal value is reached. The argument in favor of small energies
thus only holds for very small baselines around 1000 km and smaller. The sensitivity to the Pcos δ-
term increases like

√
Eµ. Hence, in the case of large cos δ, high beam energies are favored to

extract information on the CP-phase δ. In conclusion, the difference of the result presented here
and statements being found in the literature has two sources. First, usually only the explicitly
CP-violating part Psin δ of the oscillation probability is assumed to give the CP-signal5. Second,
the high energy approximation to the oscillation probabilities is often applied without careful
consideration of its validity region.

7 Conclusions

The purpose of this work was to find approximate analytic expressions for the neutrino mixing pa-
rameters and oscillation probabilities in the presence of matter. It was stated that being interested
in approximate solutions it is difficult to describe both the solar and the atmospheric resonance at
the same time. Therefore, this work is restricted to energies above the solar resonance according
to:

|Â| & |α| ⇒ Eν & 0.45GeV

(
∆m2

21

10−4 eV2

)(
2.8 g/cm3

ρ

)

. (45)

For this regime, the complete parameter mapping (eqs. (27)) was given as series expansion in the
small mass hierarchy parameter α = ∆m2

21/∆m2
31. It was shown, that the change of the CP-phase

δ in matter is triple suppressed by the mass hierarchy, the mixing angle θ13 and by θ23 being close
to maximal. Furthermore, it was shown that in order ∆m2

21/∆m2
31, the relevant contribution to

the parameter mapping is the correction of θ12 in matter. The derived parameter mapping was
used to compute the P (νe → νµ) appearance oscillation probability in matter. Effort was made to
find simple solutions, which hold over a wide parameter range and are easy to compare with the
results known from vacuum oscillation. An answer, which in the author’s point of view fulfills all

5 Frequently, the need for explicit detection of an asymmetry between the two CP-conjugated channels is stressed
and matter effects are considered as background, which prevents such measurements. The attitude taken here is,
however, different: The goal of any experiment is the limitation of the allowed parameter space for δ, which does
not necessarily presume the detection of explicit CP-violation. Hence, the Pcos δ contribution has the same status as
the Psin δ-term and matter effects have to be included in the theoretical model, which is fitted to the experimental
data.
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these requirements is the following set of terms (eqs. (38)) contributing to P (νe → νµ):

P0 = sin2 θ23
sin2 2θ13

(Â − 1)2
sin2((Â − 1)∆̂) ,

Psin δ = α
sin δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

Â(1 − Â)
sin(∆̂) sin(Â∆̂) sin((1 − Â)∆̂) ,

Pcos δ = α
cos δ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23

Â(1 − Â)
cos(∆̂) sin(Â∆̂) sin((1 − Â)∆̂) ,

P3 = α2 cos2 θ23 sin2 2θ12

Â2
sin2(Â∆̂)

with ∆̂ = ∆m2
31L/(4Eν) and Â = A/∆m2

31 = 2V Eν/∆m2
31. This gives qualitatively good results

for baselines at which the oscillation over the small (solar) mass squared difference can safely be
linearized6:

α∆̂ . 1 ⇒ L . 8000 km

(
Eν

GeV

)(
10−4 eV2

∆m2
21

)

. (46)

To obtain high precision results for large values of θ13, it is recommended not to neglect subleading
θ13 effects. The corresponding terms to P (νe → νµ) are given by eqs. (36a,b,c,f). Results for the
anti-neutrino channel are always obtained by flipping the signs of Psin δ and Â.

Using the derived approximations to the oscillation probability, it was shown that from relation
(40) a stringent limit on the baseline L can be derived, up to which the small L/Eν approximation
in matter is valid. Then, using this approximation, an expression for the CP-asymmetry ACP in
matter was given, which demonstrates that, for high neutrino energies, ACP is decreasing pro-
portional to 1/Eν . It was proposed that measuring this energy-dependence could help to obtain
information on the CP-phase δ. Last, it was demonstrated that estimations on the experimental
sensitivity to the CP-terms in P (νe → νµ) can be given. The here obtained results do not favor
low neutrino energies for the CP-violation search. The reason for the discrepancy between this
result and statements, which can presently be found in the literature, were discussed. These topics
were discussed only briefly and mainly serve as demonstrations of the applicability of the derived
formulas.
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